Monday, September 3, 2007
Let's Not Go Hog Wild With The Fat!
Sunday, September 2, 2007
Why the Low-Fat Diet is Stupid and Potentially Dangerous
Anthony Colpo, February 23, 2006 On February 8, 2006, the Journal of the American Medical Association delivered a huge blow to advocates of low-fat 'nutrition' by publishing the results of the huge Women's Health Initiative trial. The results of the trial clearly showed that a low-fat diet failed to prevent cardiovascular disease or cancer in women even when followed continuously for eight years. In women with pre-existing CVD, the low-fat diet increased the risk of CVD by 26%!
Since the publication of the WHI results, low-fat diet supporters have been working overtime manufacturing excuses for the failure of their beloved regimen. Foremost among these is that the women in the low-fat group did not reduce their fat intake sufficiently. I even had one sadly misguided soul write to me the other day telling me I did not "understand" low-fat diets, that the only reason they frequently fail is because people following them don't lower their fat intake enough.
Such stupidity makes my head spin...
First of all, I understand low-fat diets only too well! Much to my regret, I followed one throughout most of the nineties, and the result was nothing short of disastrous.
My low-fat nightmare began in my early twenties, after a doctor told me that my cholesterol, at 213, was "moderately high" and placed me at increased risk of heart disease (something I now know to be nonsense). Following the prevailing dietary wisdom at the time, I soon adopted a low-fat diet. This wasn't your average low-fat diet--it was a VERY low-fat diet, with the kind of anemic fat intake that would have made lipid-phobes like Ornish and Pritikin proud.
For years, I ate only the leanest meats; in fact, to this day, the thought of eating another skinless chicken breast, kangaroo steak, or low-fat fish makes me want to puke! Fuelling the high energy demands of my daily workouts in the face of a low fat intake meant eating carbohydrates--lots of them! In keeping with the common advice still given to athletes to eat lots of 'healthy' complex carbohydrate foods, I consumed copious amounts of rye bread, brown rice, sweet potato, wholemeal pasta, rolled oats, buckwheat, and millet.
My dedication to the low-fat mantra was nothing short of religious, and my low-fat brainwashing so thorough that when I sat down and calculated the average amount of fat calories I was taking in, I was actually proud when I realized I was consistently consuming less than 10% of my calories as fat every day!
Halfway through the nineties, reality began to bite--hard. Despite my 'healthy' diet, and my daily strenuous training regimen, my blood pressure had risen from 110/65, a reading characteristic of highly-conditioned athletes, to an elevated 130/90. I noticed it was becoming increasingly harder to maintain the lean, "ripped", vascular look that I had always prided myself on. Instead, my physique was becoming increasingly smooth and bloated. My digestive system became progressively more sluggish, my stomach often feeling heavy and distended after meals. I frequently felt tired after meals. I showed signs of leaky gut syndrome, racking up a rather impressive list of irreversible food sensitivities. I had never been much of a coffee drinker, but I was now frequently trying to fight off increasing fatigue by sipping a strong black or two before training sessions. My fasting blood glucose level was below the normal range, indicative of reactive hypoglycemia.
Basically, I felt like crap!
It wasn't until I abandoned the whole low-fat charade, and adopted a diet that went against everything preached by the reigning diet orthodoxy, that I began to reverse these symptoms. When I ate more saturated fat and meat than ever before and subsequently felt better than ever before, I quickly realized that most diet 'experts' actually had no clue what they were talking about. I quickly realized that they were mere parrots repeating an official party line. When I look back on my fat-fearing days, where I really believed that dietary fat was some sort of heinous toxin, the first thought that comes to mind is "What a wanker!" I then think of the sad legion of brainwashed folks all around the world who still follow the idiotic low-fat paradigm. "Poor folks," I think to myself, "they really have no idea just how badly they've been had".While I feel sorry for many of these folks, I have nothing but utter contempt for those who write me in defense of the low-fat paradigm. To be fooled is one thing, but to vigorously defend those who have mercilessly deceived and shafted you is beyond pitiful--such self-destructive stupidity is an absolutely repugnant thing to observe!
Let's now find out why the participants in the diet group of the WHI trial should be glad that they did not lower their fat intake any more than what they did!
Why the Low-Fat Diet is a Big Fat Fraud
One of the first priorities of healthy eating is to consume the most nutrient-dense foods possible. Cutting your fat intake strongly impedes this goal via at least three mechanisms:1) Directly slashing your intake of important vitamins and fatty acids; 2) Reducing the absorption of crucial fat-soluble vitamins; 3) Decreasing the absorption of important minerals.You probably think you're being "enlightened" when you trim the fat from your meats and ditch your egg yolks down the sink. What you are really doing is lucidly demonstrating what a mindless, brainwashed dolt you've become. You are effectively throwing away nutrients that your body needs to survive and thrive!
The fatty portions of meat, dairy and eggs are where one finds the highest concentrations of fat-soluble vitamins such as A, D, E and beta-carotene. Stripping the skin from your chicken breast not only makes it less tasty, but reduces its vitamin A content by 78%(1) Throwing away your egg yolks is equally dumb. While one large egg yolk contains 245 IU of vitamin A, 18 IU of vitamin D, and 186 mcg of lutein plus zeaxanthin, along with small amounts of other carotenoids and vitamin E, a large egg white contains none of these nutrients. Egg yolks, along with beef liver, are also an especially concentrated dietary source of phosphatidylcholine (lecithin) and choline, which the body requires for healthy liver function and for the formation of the key neurotransmitter acetylcholine. Lower levels of acetylcholine are associated with memory loss and cognitive decline.(2)
The last time you chose skim milk yogurt instead of the whole milk variety, you nutritionally short-changed yourself; skim yogurt contains 93% less vitamin A than whole yogurt! And if you chose non-fat yogurt, then congratulations--you received no vitamin A whatsoever!(1) Data from national nutrition surveys consistently show that American children have lower than recommended intakes of vitamin E, and this is reflected in below-average serum levels of the vitamin. Reduction in dietary fat further exacerbates the low vitamin E status of children.(3) The consequences of low dietary vitamin E intakes may include impaired immune responses, and an increased susceptibility to cardiovascular disease and cancer.
Willingly reducing your consumption of important vitamins and carotenes is not smart--it's downright stupid!
Absorb This!
Low-fat eating doesn't just decrease your intake of certain crucial nutrients. As researchers have shown time and time again, it will also dramatically reduce the absorption of whatever fat-soluble vitamins and carotenes remain in your diet!(4-7)
When subjects ingested equal amounts of lutein--a carotenoid that may protect against age-related macular degeneration and cataract--from either whole eggs, spinach or supplements, it was observed that lutein absorption was significantly higher during the period of whole egg consumption.(8)
In another study, researchers compared the absorption of carotenoids from salads that contained either 0, 6 or 28 grams of canola oil. There was no increase in blood carotenoid concentrations after the fat-free salad, while the reduced fat salad produced markedly lower blood carotenoid elevations than the high fat version.(9)
The addition of 150 grams of fat-rich avocado to salsa enhanced lycopene and beta-carotene absorption by 4.4 and 2.6-fold, respectively, compared to avocado-free salsa. In the same subjects, adding either twenty-four grams of avocado oil or 150 grams avocado to salad greatly enhanced alpha-carotene, beta -carotene and lutein absorption by 7.2, 15.3 and 5.1 times, respectively, compared with avocado-free salad!(10)
Only a true dumbass would think that reducing absorption of healthful fat-soluble nutrients is somehow beneficial. Don't be a dumbass.
Making a Bad Situation Worse
The mineral status of the typical Westerner is atrocious. Take magnesium for example, a substance vital for healthy heart function, blood sugar control, bone formation, and muscular contraction.(11-16) A recent survey of U.S. adults found that the average daily intake of magnesium among Caucasian men is only 352 milligrams, and a mere 278 milligrams among African American men. Caucasian women consume an average of 256 milligrams per day, while African American women take in only 202 milligrams daily.(17) The lower amounts of magnesium ingested by African Americans have been posited as a possible contributor to their increased susceptibility of hypertension, diabetes, and cardiovascular disease.(18)
The situation isn't much better for zinc. Overt zinc deficiencies are common to Third World countries where animal protein consumption is low, while milder, 'sub-clinical' zinc deficiencies appear to be common in modernized nations. Nationwide food consumption surveys by the USDA have found that the average intake of zinc for males and females of all ages is below the recommended daily allowance (RDA). This is especially worrying when one considers that RDAs are generally based on the amount of a nutrient required to prevent obvious, well-recognized deficiency diseases (such as stunted growth and hypogonadism in the case of zinc), not sub-clinical deficiencies that may damage one's health over the longer-term.
Those who follow low fat diets are at even greater risk of zinc deficiency.(19,20) Not only do low-fat diets discourage the consumption of zinc-rich foods like red meat, but a low dietary fat intake itself acts to impair mineral absorption.
It's ironic that red meat is typically denigrated for its saturated fat content, because saturates are the very fats that improve mineral absorption!(21-24)
A pilot study by researchers at the USDA Grand Forks Human Nutrition Research Center examined the effect of different fats and carbohydrate on performance and mineral metabolism in three male endurance cyclists. During alternating four-week periods, each subject consumed diets in which either carbohydrate, polyunsaturated, or saturated fat contributed about 50% of daily energy intake. Endurance capacity decreased with the polyunsaturated fat diet. The polyunsaturated diet also resulted in increased excretion of zinc and iron, while copper retention tended to be positive only on the saturated fat diet.(25)
Optimal health is next to impossible to achieve with sub-optimal mineral status. Low-fat diets, most notably those low in saturated fats, encourage sub-optimal mineral status. Yet another reason why these diets suck the salsiccia, big time!
Low-Fat, Low Omega-3
Unless you've been living on a distant planet for the last few years, then you have no doubt heard about omega-3 fats and their pivotal role in maintaining good health.
Unlike low-fat diets, clinical trials utilizing the sole intervention of increased fatty fish or fish oil intake have produced significant reductions in CHD and overall mortality. The benefits of EPA and DHA-rich items like fish and fish oil are not confined to the cardiovascular system. In epidemiological studies and animal experiments, increased intakes of long-chain omega-3 fatty acids have been associated with lower rates of cancer, depression and mental illness, adverse pregnancy outcomes, infectious disease, osteoporosis, lung disease, menstrual pain, cognitive decline in the elderly, eye damage, childhood asthma and attention-deficit hyperactivity disorder.(26-51) In clinical trials with human subjects, researchers have observed benefits from long-chain omega-3 supplementation in the treatment of asthma, alzheimers, rheumatoid arthritis, depression, schizophrenia, infant health, pregnancy outcomes, kidney disease, menstrual problems, ulcerative colitis, Crohn's disease and cystic fibrosis.(52-73) Hell, even the fat-hating vegetarian Dean Ornish recommends the use of distinctly non-vegetarian fish oil supplements! (Gee, can anyone see a contradiction there?)
So what has this all got to do with low-fat eating? Everything!
Similar to fat-soluble vitamins, the absorption of EPA and DHA increases when consumed with a high fat meal.(74)
Again, not just any old fat will do when it comes to improving one's omega-3 status. Saturated fat improves the body's conversion of plant-source omega-3 fats into the longer-chain varieties EPA and DHA, while omega-6-rich fats impede the conversion process. In young males, elongation of alpha-linolenic acid (ALA) and linoleic acid (LA) to DHA, EPA and AA was reduced by forty to 50% when dietary LA intake increased from fifteen to thirty grams per day.(75)
When rats were supplemented with linseed oil, their serum and tissue content of the all-important omega-3 fatty acids increased, and omega-6 levels decreased, to a far greater extent on a saturated fat-rich (beef fat) diet than on a linoleic acid-rich (safflower oil) diet.(76) Cutting fat--as in saturated fat--worsens your omega-3 status. If you think that's a good thing, then low-fat nutrition has already scrambled your brain. My advice: Eat some fat before you become totally brain dead!
Speaking of scrambled brains...
Nature's Anti-Depressant: Fat!
Feeling moody? Irritable? Always snapping at your kids for no good reason? Are you known around the office as "Attila the Grump"? If so, eating a low-fat diet isn't going to help the situation. In fact, a low-fat diet may actually be the cause of your mental funk!In 1998, U.K. researchers reported the results of an important experiment involving twenty healthy male and female volunteers. One group was placed on a 41% fat diet, while the other group consumed a 25% fat diet. After 4 weeks had passed, the groups were swapped around so that those originally on the low-fat diet were now consuming the high-fat diet, and vice-versa. Throughout the study, all meals were prepared by the university conducting the study and supplied to the participants. Both diets were specially designed to be as palatable and similar in taste as possible.
At the beginning and end of each diet period, every subject underwent a battery of psychological assessments, including various mood state questionnaires and an interview by a psychiatrist who was blinded to the participant's dietary status.
The study was tightly-controlled and adherence to the diets appears to have been high. HDL cholesterol levels declined during the low-fat period, a typical response on low-fat, high-carb diets, indicating that subjects ate the foods as supplied.
The researchers found that, while ratings of anger-hostility slightly declined during the high-fat diet period, they significantly increased during the low-fat, high-carb diet period! Tension-anxiety ratings declined during the high-fat period, but did not change during the four weeks of low-fat, high-carb eating. Ratings of depression declined slightly during the high-fat period, but increased during the low-fat, high-carb period, mainly due to two of the low-fat subjects reporting significantly greater depression-dejection ratings.
What is particularly alarming about this study is that the low-fat diet produced these symptoms in mentally healthy subjects. As the researchers emphasized, the participants were "a psychologically robust group who had never previously suffered from depression or anxiety, and who were not going through any 'stressful' events during the study." They further stated that "The alterations in mood observed in the present study may have been greater if subjects were feeling more stressed or were more susceptible to mental illness."(77)
Low-fat diets should be approached with extreme caution by those with a history of depression, anxiety, overly aggressive behavior or mental illness. Such iniduals may be especially vulnerable to the nutritional inadequacies of low-fat diets.
The UK researchers' observations raise some interesting questions. Could the low-fat, high-carbohydrate diets that have been so heavily promoted over the last thirty years be at least partially responsible for increases in anti-social behavior witnessed during the same period? If studies with our primate cousins are anything to go by, the answer to this question could well be affirmative.
Low-Fat Diet Makes Monkeys Go Ape
For almost 2 years, adult male monkeys were fed a "luxury" diet - (43 alories from fat, 0.34 mg cholesterol/Calorie of diet) or a "prudent" diet (30 alories from fat, 0.05 mg cholesterol/Calorie of diet).
Researchers observed that the low-fat diet monkeys were more irritable and initiated more aggression than the "luxury" diet animals.
The prudent diet resulted in lower total serum cholesterol levels, something that our absent-minded health authorities automatically assume is a good thing. The researchers, however, noted: "These results are consistent with studies linking relatively low serum cholesterol concentrations to violent or antisocial behavior in psychiatric and criminal populations and could be relevant to understanding the significant increase in violence-related mortality observed among people assigned to cholesterol-lowering treatment in clinical trials."(78)
A research monkey after discovering he was going to be placed on a low-fat diet for almost 2 years.
Fatless Shrugged
It was Ayn Rand who once said that the most noble and productive goal for a person to engage in was the pursuit of their own happiness. If the achievement of your own happiness is important to you, then kick the low-fat diet's sad, sorry, melancholy butt right out of your life--it's a loser.
Low-Fat Diets Lower Testosterone
Testosterone is abhorred by politically correct weenies, who like to blame it for every instance of disagreeable male behavior, in much the same way menstruation was once cited as the catch-all explanation for uncharacteristically aggressive or irritable female behavior.
Of course, scientific reality is of little concern to the politically correct. The fact is, testosterone is an extremely important hormone for both men and women. Sex drive, muscle and bone health, immune function, cognitive function, mood, and cardiovascular health are all negatively affected by declining levels of testosterone. Testosterone levels typically decline with age, and, along with the decline of other key hormones, falling T levels are believed to be a major contributor to many of the deleterious changes seen during the aging process. As such, aging iniduals should be looking at ways to preserve and even boost their testosterone status, rather than engaging in self-defeating habits that will speed the decline in T levels. Alcohol abuse, recreational drug use, pharmaceutical drugs, stress, and poor sleep habits can all lower testosterone levels.
So too can low-fat diets.
Research shows that reducing fat intake from around 40% to 20-25% of calories decreases testosterone output. Low fat diets also increase levels of sex hormone-binding globulin (SHBG), a protein which binds to testosterone, thus reducing the amount of bioavailable, or 'free', testosterone in the body. It is free testosterone that is responsible for this hormone's favorable effects on growth, repair, sexual capacity and immune function.(79-81) Again, not just any old fat will suffice when it comes to optimizing testosterone levels. A study with weight-training men showed higher saturated fat and monounsaturated fat consumption to be positively associated with testosterone levels. In contrast, higher dietary levels of so-called "heart-healthy" polyunsaturated fats relative to saturated fats were associated with lower testosterone levels.(82)
It's highly ironic that athletes and bodybuilders will take all manner of expensive, esoteric and often dubious testosterone-boosting concoctions--not to mention anabolic steroids--yet will follow hormone-damping low-fat diets with religious fervor. It's a little like putting on a weighted vest before a big race and expecting to run at full speed.
Hormones like testosterone play a fundamentally important role in stimulating and regulating growth and metabolism. Don't go throwing a low-fat monkey wrench into your metabolic engine!
Low-Fat Diets and Immune Function
Diet 'experts' assure us that a low-fat diet is the key to good health. The published research does not support such claims.
Despite the virulent ranting of anti-fat activists, trials comparing sedentary adult volunteers fed low-fat diets with those receiving higher fat diets has shown no improvement in immune status in the former group.(83,84)
In children, whole milk consumption is associated with fewer gastrointestinal infections than consumption of low fat milk.(85) Rats consuming diets high in milk fat show a significantly greater resistance to Listeria infection and higher survival rates than those whose diets were low in milk fat.(86) Similar results have been observed in mice fed diets high in saturate-rich coconut oil.(87)
In athletes, who are constantly pushing their immune systems to the edge with strenuous training, adherence to the commonly-recommended low-fat high-carbohydrate diet (15-19 total calories) increases pro-inflammatory immune factors, decreases anti-inflammatory factors, and depresses antioxidant status when compared to higher fat diets (30-50% total calories).(88,89) Such changes may leave athletes on low-fat diets with a lowered resistance to infection and a higher risk of chronic illness. This may be due to difficulty in obtaining sufficient calories from low-fat diets to meet the energy demands of exercise; increasing dietary fat intake and total caloric intake to match energy expenditure appears to reverse the negative effects on immune function reported on calorie-deficient, low-fat diets. Diets comprising 32o 55at also improve endurance capacity compared to diets with 15% fat.(90)
It was Scandinavian researchers who, in the 1960s, performed research showing that using extremely high-carbohydrate, low-fat diets for short periods could enhance athletic performance. This was achieved by using these diets as part of a "depletion-repletion" carbohydrate-loading strategy, which helped temporarily elevate muscle glycogen stores to higher than usual levels. One of the pioneers in this area, Dr. Jan Karlsson, points out that such diets were never intended to be applied for more than 3-4 days. Karlsson and his colleagues openly lament that these diets are now employed for extended periods of time, and refer to the prolonged use of very high-carbohydrate/low-fat diets by athletes as "voluntary malnourishment". They note that in Scandinavia, researchers use the term "Carbohydrate Trap" when referring to the widespread belief that these diets are required for optimal performance. These researchers consider a 50-55% carbohydrate, 35% fat diet to be eminently more sensible and nutritious than then the less 60 carb, more then 25%.
For athletes non-athletes alike, the low-fat diet is a sick (pun intended) joke.
The Low-Fat Diet Does Not Protect Against Heart Disease, and May Actually Worsen It
The WHI trial confirmed what well-read cholesterol skeptics have known for a long time: The low-fat diet is a big fat fraud when it comes to preventing heart disease. Among the 48,835 women participating in the trial, no significant differences in CHD or stroke incidence, CHD or stroke mortality, or total mortality were observed(92). Nor were there any reductions in the incidence or mortality rates of breast cancer, colorectal cancer, or total cancer.(93,94) There was however, one very ominous finding to emerge from the WHI trial. Among the 3.4% of trial participants with pre-existing cardiovascular disease, those randomized to the low-fat diet experienced a 26ncrease in the relative risk of non-fatal and fatal CHD!
Low-fat advocates have remained deafeningly silent on this inconvenient finding, and would no doubt like to believe this was just a 'freak' occurrence. However, this is hardly the first time that low-fat eating has been shown to worsen the prognosis of women with existing cardiovascular disease.
In 2004, the world's most prominent nutrition journal, The American Journal of Clinical Nutrition, published the results of a very, very interesting study. Harvard researchers had taken 235 postmenopausal women with established coronary heart disease, and ided them into four categories according to their level of saturated fat intake. They then performed coronary angiographies at baseline and after a mean follow-up of 3.1 years, analyzing over 2,200 coronary artery segments in the process.
After adjusting for multiple confounders, a higher saturated fat intake was associated with less narrowing of the arteries and less progression of coronary atherosclerosis. Compared with a 0.22 mm narrowing in the lowest quartile of intake, there was a 0.10-mm narrowing in the second quartile, a 0.07 mm narrowing in the third quartile, and no narrowing in the fourth and highest quartile of saturated fat intake!
Following a low-fat diet means adopting a high-carbohydrate diet by default. After all, it is exceedingly difficult and highly unpalatable to achieve the bulk of one's caloric needs by eating lean protein foods. It is of no small concern then, that carbohydrate intake was positively associated with atherosclerotic progression, particularly when the glycemic index was high. The intake of so-called 'heart-healthy' polyunsaturated fats was also positively associated with progression of atherosclerosis, but monounsaturated and total fat intakes were not associated with progression. It must be noted that the major sources of polyunsaturates in Western countries are refined vegetable oils which are rich in the omega-6 fat linoleic acid. The polyunsaturated omega-3 fats, which are underconsumed by most Westerners, have actually been shown to lower CVD.
After examining the baseline data for the study subjects, it is apparent that the results can not be explained away by otherwise healthier lifestyles among those eating the most saturated fat; the high saturated fat group, in fact, had the greatest number of current smokers! Women eating the most saturated fat were also less likely to take blood-thinning medications like aspirin.(95)
If this study had found saturated fats to be associated with cardiovascular disease, its results would have been trumpeted in headlines around the world. Instead, they were largely ignored by the mainstream media and our ever-so responsible 'health' authorities. It appears only studies that support the cherished dogma of our health orthodoxy are considered suitable as press release fodder... A major factor in the progression of cardiovascular disease--and most major diseases--is free radical damage. It is well-established that saturated fatty acids, because of their lack of vulnerable double bonds, are the least susceptible to free radical damage; polyunsaturates are the most vulnerable. We also know that increased carbohydrate consumption, especially of the refined variety, does an outstanding job of raising blood sugar and insulin levels, which accelerates glycation, free radical activity, blood clot formation, and arterial smooth muscle cell proliferation.
It should also be noted that increasing heart disease incidence throughout the twentieth century has been accompanied by increasing polyunsaturate consumption, while a marked increase in refined carbohydrate consumption during the last three decades has been accompanied by spiralling obesity and diabetes incidence. Animal fat consumption, in contrast, has remained stable over the last 100 years.
So what we have is two studies that show that women with pre-existing heart disease will experience WORSE outcomes if they shun saturated fat and opt for a low-fat/high-carbohydrate diet! Furthermore, the validity of these results is supported by basic biochemistry and epidemiological data. So will low-fat advocates stop recommending this pattern of eating to women with heart disease? Does their concern for human life override their need to defend their precious low-fat dogma at all costs?
I truly doubt it...
If low-fat advocates won't be straight with you, then I will. Let's be perfectly clear on this: If you are female, and suffer cardiovascular disease, the published, peer-reviewed scientific evidence indicates that adopting a low-fat diet could be DEADLY.
The WHI is not the only dietary intervention trial to demonstrate the worthlessness of the low-fat diet in preventing CVD. In 1965, the prominent journal Lancet published the results of a trial conducted by the UK Medical Research Committee. In this study, 264 men under 65 were assigned to either a low-fat diet or their usual diet. Dietary records show that those in the low-fat group averaged 45 g/day of fat throughout the trial, while those in the control group actually increased their average fat intake from 106 to 125g. The average serum cholesterol measurement of the low-fat group was 25 points lower than that of the control group at 4 years. Despite nonsensical claims that "every 1mg/dl drop in cholesterol equals a 2% drop in CHD risk", there were no differences between the two groups in CHD incidence or mortality after 4 years.
In Search of the Elusive 'Negative Fat Intake'!
The hysterical anti-fat vitriole that spews forth from some anti-fat faddists leads me to believe that if these clowns could eat a 'negative-fat' diet, they would! As for their argument that the above trials didn't lower fat enough, one has to wonder how creating even greater deficiencies in valuable nutrients, and predisposing one to greater risk of depression and anger--all of which low-fat diets have indeed been clinically documented to do--will in any way help prevent heart disease! Maybe these folks have been eating low-fat so long that it's started to drain their brains; healthy human brains, after all, are 60% by weight!
The authors of the MRC trial concluded that: "A low-fat diet has no place in the treatment of myocardial infarction." Despite being written over forty years ago, these words have largely been ignored by a medical and health hierarchy which seems to earnestly believe that if only it keeps flogging the dead low-fat horse, it will one-day magically spring to life. In Australia, this is known as engaging in a 'wank', which means that people who push low-fat diets despite no proof whatsoever of their efficacy are wankers. This might be stating the obvious, but you really shouldn't listen to wankers!
But the Japanese Eat a Low-Fat Diet...Don't They?
Supporters of low-fat nutrition cite the Japanese ad nauseum, claiming that their low-fat/high-carbohydrate diet is the reason for their low rate of heart disease. It is ironic that many of these same commentators exhort the benefits of whole-grains and tell us that the only 'bad' carbohydrates are those that come from refined sugars and grains. These folks need to get their story straight---a major source of carbohydrates in the Japanese diet is white rice--a refined grain! That means that if the high-carbohydrate Japanese diet is cardio-protective, then refined grains must be good for one's heart! Well, which is it? You can't have it both ways; either refined grains are heart-friendly, or they're not!
The truth is, the longevity and low CHD incidence of the Japanese owes nothing to carbohydrate intake, refined or otherwise. During the 1960s and 1970s, industrialization underwent rapid growth in Japan. This period of marked economic change bought with it greater consumption of animal protein and fat. This increased animal food consumption in Japan has been accompanied by a marked decline in both the overall incidence of and the mortality from one of that nation's biggest killers--stroke. This increase in animal protein and animal fat consumption has also occurred alongside Japan's rise to the top of the longevity ladder.(96,97)
If you're tempted to write this off as merely a consequence of improved living standards and medical technology, keep in mind that long-term follow-up studies with both native and migrant Japanese populations show that those who eat the most animal protein and animal fat enjoy greater longevity and a lower incidence of stroke than those who eat lesser amounts.(98-101)
OK, So What About the Mediterranean Diet?
A diet low in saturated fat is purportedly a major factor in the low rates of CHD observed in Southern European countries. Just one wee problem: France, the Mediterranean country with the lowest CHD rates of all, is also the Mediterranean country with the highest saturated fat intake!
Oops!
Health 'experts' have tried to brush off this embarrassing observation as a 'paradox' (orthodoxy loves applying the 'paradox' label to uncomfortable contradictions) by claiming that red wine explains this difference. If that were true, then the Italians, who drink a similar amount of red wine, should have CHD rates even lower than France. But they don't; their CHD rates are similar to those of other Southern European countries where far less red wine is consumed.(102)
Conclusion
I could go on, and on, and on but I'll just close by saying that the low-fat diet has NEVER been demonstrated to do all the wonderful health-fortifying things claimed for it. The only trials showing favorable effects in people following low-fat diets are those that simultaneously employed other truly useful interventions, like exercise, stress management, increased fruit and vegetable intake and decreased processed food intake, and weight loss. However, there is absolutely no law whatsoever stating that low-fat eating is required for the implementation of any of these strategies. In fact, given the available evidence, one can only conclude that the inclusion of higher fat intakes in these trials may even have improved the results! The bottom line: Not only is low-fat eating a boring way to go through life, it is a useless and often counterproductive hoax.
References and Assorted Disclaimers:
DISGRUNTLED WORSHIPPERS OF THE LOW-FAT RELIGION SHOULD READ THE FOLLOWING:I have not stated anything in this article that cannot be verified by published, peer-reviewed research. Nonetheless, my inbox will no doubt be flooded with angry emails from those who have been brainwashed by the low-fat paradigm, and who violently object to the thought that something that they have believed in so strongly for so long might actually be false. In other words, malevolent dimwits who want to shoot the messenger! For those of you who fall into this category, my suggestions are as follows: 1) GROW UP!; 2) Start placing a premium on discovering the facts, as opposed to doggedly defending what you have already decided you want to believe; 3) Instead of attacking me, start questioning the motives of those who profit greatly from the fallacious anti-fat, anti-cholesterol paradigm. This includes the food and drug conglomerates that make BILLIONS from the sale of low-fat foods and cholesterol-lowering drugs, the health and dietetic 'associations/organizations/institutes/foundations/etc' who receive millions in 'donations' from these very same companies, and the executives of these so-called 'non-profit' organizations who enjoy six-figure incomes and extensive perquisites. To attack the owner of a non-commercial web site, who has nothing to gain financially by either supporting or opposing the low-fat paradigm, while defending those WHO DO, is so bloody stupid that it defies comprehension. Unfortunately, there are a lot of bloody stupid people in the world! If you are one of them, and decide to write me, please note that unless your email contains valid references to the scientific literature, it will be deleted immediately. After having established yourself as an ignorant goofball, your email address will also be added to my spam filter and any further emails will be delivered straight to my trash. Sorry, but I really am extremely busy and have no time or patience for ignorant, time-wasting twits.NOTE: I have no problem with people reprinting this article on other web sites for non-commercial purposes. Heck, you can post it on the side of the Empire State Building for all I care (just be sure to seek permission from the owners first)! However, PLEASE ENSURE that you give full credit to the author, whether you reproduce the article in whole or part. A hyperlink to http://www.theomnivore.com/ would also be greatly appreciated! Those wishing to reprint this or any other article on TheOmnivore.com for commercial purposes should email: ac.theomnivore@gmail.com References 1. USDA National Nutrient Database for Standard Reference. Available online: http://www.nal.usda.gov/fnic/foodcomp/search/ 2. Giacobini E. Cholinergic function and Alzheimer's disease. Int J Geriatr Psychiatry. 2003 Sep; 18 (Suppl 1): S1-S5. 3. Bendich A. Vitamin E status of US children. Journal of the American College of Nutrition, Aug, 1992; 11 (4): 441-444. 4. Takyi EE. Children's consumption of dark green, leafy vegetables with added fat enhances serum retinol. Journal of Nutrition, 1999; 129 (8): 1549-1554. 5. Jalal F, et al. Serum retinol concentrations are affected by food sources of ß-carotene, fat intake, and anthehelmintic drug treatment. American Journal of Clinical Nutrition, 1998; 68: 623-629. 6. Roodenburg JA, et al. Amount of fat in the diet affects bioavailability of lutein esters but not of {alpha}-carotene, {beta}-carotene, and vitamin E in humans. American Journal of Clinical Nutrition, 2000; 71 (5): 1187-1193. 7. Drammeh BS, et al. A Randomized, 4-Month Mango and Fat Supplementation Trial Improved Vitamin A Status among Young Gambian Children. Journal of Nutrition, 2002; 132 (12): 3693 - 3699. 8. Chung H-Y, et al. Lutein Bioavailability Is Higher from Lutein-Enriched Eggs than from Supplements and Spinach in Men. Journal of Nutrition, 2004; 134: 1887-1893. 9. Brown MJ, et al. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. American Journal of Clinical Nutrition, Aug. 2004; 80: 396-403. 10. Unlu NZ, et al. Carotenoid Absorption from Salad and Salsa by Humans Is Enhanced by the Addition of Avocado or Avocado Oil. Journal of Nutrition, Mar, 2005; 135: 431-436. 11. Fox C, et al. Magnesium: its proven and potential clinical significance. Southern Medical Journal, Dec, 2001; 94 (12): 1195-1201. 12. Shechter M, et al. Effects of oral magnesium therapy on exercise tolerance, exercise-induced chest pain, and quality of life in patients with coronary artery disease. American Journal of Cardiology, Mar 1, 2003; 91 (5): 517-521. 13. Shechter M, et al. Beneficial antithrombotic effects of the association of pharmacological oral magnesium therapy with aspirin in coronary heart disease patients. Magnesium Research, Dec, 2000; 13 (4): 275-284. 14. Shechter M, et al. Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation, Nov 7, 2000; 102 (19): 2353-2358. 15. Guerrero-Romero F, et al. Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes & Metabolism, Jun, 2004; 30 (3): 253-258. 16. Rodriguez-Moran M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care, Apr, 2003; 26 (4): 1147-1152. 17. Ford ES, Mokdad, AH. Dietary Magnesium Intake in a National Sample of U.S. Adults. Journal of Nutrition, 2003; 133: 2879-2882. 18. Fox CH, et al. Magnesium deficiency in African-Americans: does it contribute to increased cardiovascular risk factors? Journal of the National Medical Association, 2003 Apr; 95 (4): 257-62. 19. Retzlaff BM, et al. Changes in vitamin and mineral intakes and serum concentrations among free-living men on cholesterol-lowering diets: the Dietary Alternatives Study. American Journal of Clinical Nutrition, 1991; 53 (4): 890-898. 20. Baghurst KI, et al. Demographic and dietary profiles of high and low fat consumers in Australia. Journal of Epidemiology and Community Health, 1994; 48 (1): 26-32. 21. Mahoney AW, et al. Effects of level and source of dietary fat on the bioavailability of iron from turkey meat for the anemic rat. Journal of Nutrition, 1980: 110 (8): 1703-1708. 22. Johnson PE, et al. The effects of stearic acid and beef tallow on iron utilization by the rat. Proc Soc Exp Biol Med, 1992; 200 (4): 480-486. 23. Koo SI, Ramlet JS. Effect of dietary linoleic acid on the tissue levels of zinc and copper, and serum high-density lipoprotein cholesterol. Atherosclerosis, 1984; 50 (2): 123-132. 24. Van Dokkum W, et al. Effect of variations in fat and linoleic acid intake on the calcium, magnesium and iron balance of young men. Ann Nutr Metab, 1983; 27 (5): 361-369. 25. Lukaski HC, et al. Interactions among dietary fat, mineral status, and performance of endurance athletes: a case study. Int J Sport Nutr Exerc Metab, Jun 2001; 11 (2): 186-198. 26. Ip, et al. Requirement of essential fatty acid for mammary tumorigenesis in the rat. Cancer Research, 1985; 45 (5): 1997-2001. 27. Rose DP. Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. American Journal of Clinical Nutrition, Dec, 1997; 66 (6 Suppl): 1513S-1522S. 28. Fernandez E, et al. Fish consumption and cancer risk. American Journal of Clinical Nutrition, Jul 1, 1999; 70(1): 85-90. 29. Terry P, et al. Fatty fish consumption and risk of prostate cancer. Lancet, Jun 2, 2001; 357 (9270): 1764-1766. 30. Terry P, et al. Fatty fish consumption lowers the risk of endometrial cancer: a nationwide case-control study in Sweden. Cancer Epidemiology, Biomarkers & Prevention, Jan, 2002; 11 (1): 143-145. 31. Maillard V, et al. N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. International Journal of Cancer, Mar 1, 2002; 98 (1): 78-83. 32. Kato I, et al. Prospective study of diet and female colorectal cancer: the New York University Women's Health Study. Nutrition and Cancer, 1997; 28: 276-281. 33. Hakim IA, et al. Fat intake and risk of squamous cell carcinoma of the skin. Nutrition and Cancer, 2000; 36 (2): 155-162. 34. Tanskanen A, et al. Fish Consumption and Depressive Symptoms in the General Population in Finland. Psychiatric Services, Apr, 2001; 52: 529-531. 35. Adams PB, et al. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids, Mar, 1996; 31 (Suppl): S157-161. 36. Mamalakis G, et al. Depression and adipose essential polyunsaturated fatty acids. Prostaglandins, Leukotrienes, and Essential Fatty Acids, Nov, 2002; 67 (5): 311-318. 37. Laugharne JD, et al. Fatty acids and schizophrenia. Lipids, Mar, 1996; 31 (Suppl): S163-165. 38. Olsen SF, Secher NJ. Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. British Medical Journal, Feb 23, 2002; 324: 447. 39. Williams MA, et al. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology, May, 1995; 6 (3): 232-237. 40. Hibbeln JR. Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. Journal of Affective Disorders, May, 2002; 69(1-3): 15-29. 41. Turek JJ, et al. Dietary polyunsaturated fatty acids modulate responses of pigs to Mycoplasma hyopneumoniae infection. Journal of Nutrition, Jun, 1996; 126 (6): 1541-1548. 42. Tully AM, et al. Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer's disease: a case-control study. British Journal of Nutrition, Apr, 2003; 89 (4): 483-489. 43. Requirand P, et al. Serum fatty acid imbalance in bone loss: example with periodontal disease. Clinical Nutrition, Aug, 2000; 19 (4): 271-276. 44. Watkins BA, et al. Nutraceutical Fatty Acids as Biochemical and Molecular Modulators of Skeletal Biology. Journal of the American College of Nutrition, 2001; 20 (90005): 410S-416S. 45. Reinwald S, et al. Repletion with (n-3) Fatty Acids Reverses Bone Structural Deficits in (n-3)-Deficient Rats. Journal of Nutrition, Feb 2004; 134: 388-394. 46. Schwartz J. Role of polyunsaturated fatty acids in lung disease. American Journal of Clinical Nutrition, Jan 2000; 71 (suppl): 393S-96S. 47. Shahar E, et al. Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. New England Journal of Medicine, Jul 28, 1994: 331 (4): 228-233. 48. Deutch B. Menstrual pain in Danish women correlated with low n-3 polyunsaturated fatty acid intake. European Journal of Clinical Nutrition, 1995; 49: 508-516. 49. Kalmijn, S., et al. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. American Journal of Epidemiology, Jan 1, 1997: 145: 33-41. 50. Seddon JM, et al. Dietary Fat and Risk for Advanced Age-Related Macular Degeneration. Archives of Ophthalmology, 2001; 119 (8): 1191-1199. 51. Hodge L, et al. Consumption of oily fish and childhood asthma risk. Medical Journal of Australia, 1996; 164: 137-140. 52. Dry J, Vincent D. Effect of a fish oil diet on asthma: results of a 1-year double-blind study. International Archives of Allergy and Applied Immunology, 1991; 95 (2/3): 156-157. 53. Burgess JR, et al. Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. American Journal of Clinical Nutrition, 2000; 71: 327-330. 54. Yehuda S, et al. Essential fatty acids preparation (SR-3) improves Alzheimer's patients quality of life. International Journal of Neuroscience, Nov, 1996; 87 (3-4): 141-149. 55. Geusens P et al. Long-term effect of omega-3 fatty acid supplementation in active rheumatoid arthritis, a 12-month, double-blind, controlled study. Arthritis & Rheumatism, Jun, 1994; 37 (6): 824-829. 56. Schiz Peet M, Horrobin DF. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Archives of General Psychiatry, Oct, 2002; 59 (10): 913-919. 57. Stoll AL, et al. Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Archives of General Psychiatry, May, 1999; 56 (5): 407-412. 58. Peet M, et al. Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophrenia Research, Apr 30, 2001; 49 (3): 243-251. 59. Peet M, Horrobin DF. A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. Journal of Psychiatric Research, Jan-Feb, 2002; 36 (1): 7-18. 60. Hamazaki T, et al. The Effect of Docosahexaenoic Acid on Aggression in Young Adults. A Placebo-controlled Double-blind Study. Journal of Clinical Investigation, Feb, 1996; 97 (4): 1129-1134. 61. Jorgensen MH, et al. Effect of formula supplemented with docosahexaenoic acid and gamma-linolenic acid on fatty acid status and visual acuity in term infants. Journal of Pediatric Gastroenterology and Nutrition, 1998; 26: 412-421. 62. Carlson SE, et al. Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin. Pediatric Research, 1996; 39: 882-888. 63. O'Connor DL, et al. Growth and Development in Preterm Infants Fed Long-Chain Polyunsaturated Fatty Acids: A Prospective, Randomized Controlled Trial. Pediatrics, Aug 1, 2001; 108 (2): 359-371. 64. Helland IB, et al. Maternal Supplementation With Very-Long-Chain n-3 Fatty Acids During Pregnancy and Lactation Augments Children's IQ at 4 Years of Age. Pediatrics, Jan, 2003; 111 (1): e39-e44. 65. Dunstan JA, et al. Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. Journal of Allergy and Clinical Immunology, Dec, 2003; 112 (6): 1178-1184. 66. Olsen SF, et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet, Apr 25, 1992; 339 (8800): 1003-1007. 67. Olsen SF, Secher NJ. A possible preventive effect of low-dose fish oil on early delivery and pre-eclampsia: indications from a 50-year-old controlled trial. British Journal of Nutrition, Nov, 1990; 64 (3): 599-609. 68. De Caterina R et al. n-3 fatty acids and renal diseases. American Journal of Kidney Diseases, Sept, 1994; 24 (3): 397-415. 69. Harel Z et al. Supplementation with omega-3 polyunsaturated fatty acids in the management of dysmenorrhea in adolescents. American Journal of Obstetrics & Gynecology, Apr, 1996; 174 (4): 1335-1338. 70. Aslan A, Triadafilopoulos G. Fish oil fatty acid supplementation in active ulcerative colitis: A double-blind, placebo-controlled, crossover study. American Journal of Gastroenterology, Apr, 1992; 87: 432-37. 71. Salomon, P., et al. Treatment of ulcerative colitis with fish oil n-3 omega fatty acid: an open trial. Journal of Clinical Gastroenterology, Apr, 1990; (12): 157-1161. 72. Belluzzi A et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn's disease. New England Journal of Medicine, Jun 13, 1996; 334 (24): 1557-1560. 73. Lawrence R, Sorrell T. Eicosapentaenoic acid in cystic fibrosis: evidence of a pathogenetic role for leukotriene B4. Lancet, Aug 21, 1993; 342: 465-469. 74. Lawson LD, Hughes BG. Absorption of eicosapentaenoic acid and docosahexaenoic acid from fish oil triacylglycerols or fish oil ethyl esters co-ingested with a high-fat meal. Biochem Biophys Res Commun, Oct 31, 1988; 156 (2): 960-963. 75. Emken EA, et al. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta, Aug 4, 1994; 1213 (3): 277-288. 76. Garg ML, et al. Dietary saturated fat level alters the competition between alpha-linolenic and linoleic acid. Lipids 1989 Apr;24(4): 334-339. 77. Wells AS, et al. Alterations in mood after changing to a low-fat diet. British Journal of Nutrition, Jan, 1998; 79 (1): 23-30. 78. Kaplan JR, et al. The effects of fat and cholesterol on social behavior in monkeys. Psychosom Med. 1991 Nov-Dec; 53 (6): 634-642. 79. Hamalainen EK, et al. Decrease of serum total and free testosterone during a low-fat high-fibre diet. J Steroid Biochem. Mar 1983; 18 (3): 369-370. 80. Reed MJ, et al. Dietary lipids: an additional regulator of plasma levels of sex hormone binding globulin. J. Clin. Endocrinol. Metab, 1987; 64: 1083-1085. 81. Dorgan JF, et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr. Dec 1996; 64 (6): 850-855. 82. Volek JS, et al. Testosterone and cortisol in relationship to dietary nutrients and resistance exercise. Journal of Applied Physiology, Jan 1997; 82 (1): 49-54. 83. Kelley DS, et al. Energy restriction decreases number of circulating natural killer cells and serum levels of immunoglobulins in overweight women. European Journal of Clinical Nutrition, Jan, 1994; 48 (1): 9-18. 84. van het Hof KH, et al. A long-term study on the effect of spontaneous consumption of reduced fat products as part of a normal diet on indicators of health. International Journal of Food Sciences and Nutrition, Jan, 1997; 48 (1): 19-29. 85. Koopman JS, et al. Milk fat and gastrointestinal illness. Am. J. Public Health 1984; 74: 1371-1373 86. Puertollano MA, et al. Relevance of Dietary Lipids as Modulators of Immune Functions in Cells Infected with Listeria monocytogenes. Clinical and Diagnostic Laboratory Immunology, Mar. 2002; 9 (2): 352-357. 87. de Pablo MA, et al. Determination of natural resistance of mice fed dietary lipids to experimental infection induced by Listeria monocytogenes. FEMS Immunol Med Microbiol. 2000 Feb;27(2):127-33. 88. Meksawan K, et al. Effect of dietary fat intake and exercise on inflammatory mediators of the immune system in sedentary men and women. Journal of the American College of Nutrition, Aug, 2004; 23 (4): 331-340. 89. Venkatraman JT, et al. Dietary fats and immune status in athletes: clinical implications. Medicine and Science in Sports and Exercise, Jul, 2000; 32 (7 Suppl): S389-S395. 90. Pendergast DR, et al. A perspective on fat intake in athletes. Journal of the American College of Nutrition, 2000 Jun; 19 (3): 345-350. 91. Göransson U, et al. The 'Are´ Sport Nutratherapy Program: The Rationale for Food Supplements in Sports Medicine. In: Simopoulos AP, Pavlou KN (eds). Nutrition and Fitness: Metabolic and Behavioral Aspects in Health and Disease. World Review of Nutrition and Dietetics, 1997; 82: 101-121. 92. Howard BV, et al. Low-Fat Dietary Pattern and Risk of Cardiovascular Disease: The Women's Health Initiative Randomized Controlled Dietary Modification Trial. Journal of the American Medical Association, Feb 8, 2006; 295: 655-666. 93. Prentice RL, et al. Low-Fat Dietary Pattern and Risk of Invasive Breast Cancer: The Women's Health Initiative Randomized Controlled Dietary Modification Trial. Journal of the American Medical Association, Feb 8, 2006; 295: 629-642. 94. Beresford SAA, et al. Low-Fat Dietary Pattern and Risk of Colorectal Cancer: The Women's Health Initiative Randomized Controlled Dietary Modification Trial. Journal of the American Medical Association, Feb 8, 2006; 295: 643-654. 95. Mozaffarian D, et al. Dietary fats, carbohydrate, and progression of coronary atherosclerosis in postmenopausal women. American Journal of Clinical Nutrition, 2004; 80: 1175-1184. 96. Tanaka H, et al. Secular trends in mortality for cerebrovascular disease in Japan, 1960-1979. Stroke, 1982; 13: 574-581. 97. Nakayama C, et al. A 15.5-Year Follow-up Study of Stroke in a Japanese Provincial City: The Shibata Study. Stroke, Jan 1, 1997; 28(1): 45-52. 98. Iso H, et al. Fat and protein intakes and risk of intraparenchymal hemorrhage among middle-aged Japanese. American Journal of Epidemiology, Jan 1, 2003; 157 (1): 32-39. 99. Abbott RD, et al. Effect of dietary calcium and milk consumption on risk of thromboembolic stroke in older middle-aged men: The Honolulu Heart Program. Stroke, May 1996; 27: 813 - 818. 100. Sauvaget C, et al. Intake of animal products and stroke mortality in the Hiroshima/Nagasaki Life Span Study. International Journal of Epidemiology, Aug 1, 2003; 32 (4): 536-543. 101. Sauvaget C, et al. Animal Protein, Animal Fat, and Cholesterol Intakes and Risk of Cerebral Infarction Mortality in the Adult Health Study. Stroke, 2004; 35: 1531. 102. Food intake data from Food and Agriculture Organization of the United Nations, Statistical Database. CHD mortality data from World Health Statistics Annual, 1961, 1966 and 1997-1999 editions.
Saturday, September 1, 2007
The China Study: More Vegan Nonsense!
Mr. Colpo's paper, LDL Cholesterol: "Bad" Cholesterol, or Bad Science?, has been published in the peer reviewed medical Journal of American Physicians and Surgeons.
Why T. Colin Campbell's Book is Extremely
Misleading.
Anthony Colpo,
May 17, 2006.
PLEASE NOTE: To pre-empt scandalous claims by those who can't
factually dispute what I'm saying and must instead resort to baseless
attacks on my integrity, I want to make it clear that I do NOT and NEVER
have received ANY form of compensation from the meat, dairy, egg or
nutritional supplement industries.
I've always held it as a maxim that the more a person boasts about how
honest, ethical and trustworthy they are, the more you should be wary of
them. In his book The China Study: The Most Comprehensive Study of
Nutrition Ever Conducted and the Startling Implications for Diet, Weight Loss
and Long-Term Health, T. Colin Campbell goes to great pains to assure us he
is a wonderful and worthy disseminator of health and nutrition advice.
Throughout the book, Campbell repeatedly reminds us of his glowing
academic qualifications, his appointments to a multitude of government
advisory panels, his prolific receipt of government grants, and his numerous
published papers. The implicit message is: "I'm ethical, I've got impeccable
credentials, and I know what I'm talking about. You can trust me."
Well, I've never sat on a government advisory panel, never attended even a
single university lecture, and cannot yet boast of having the same volume of
published literature as Campbell, but I'm smart enough to know most of the
claims made in his book are utter rubbish. Campbell might be deeply
impressed with his own credentials, but after reading The China Study my
trust in his ability to deliver accurate nutrition information ranks somewhere
between zilch and zero.
Protein Prejudice
Campbell is sadly misinformed when it comes to the topic of protein,
something especially regrettable for someone whose "entire professional
career in biomedical research has centered on protein". Within minutes of
beginning his book, even the dullest reader will quickly realize that Campbell
is on a zealous mission against animal protein, which he believes to be public
healthy enemy number one.
Campbell's anti-animal protein bent began while working in the Philippines,
where he observed that children from the wealthiest families reportedly ate the
most protein and had the highest rates of liver cancer. In itself, this
observation is next to useless. Wealthy inhabitants of third world countries are
often the first to adapt Western-style diets, which include not just more animal
foods but a vast array of nutrient-depleted processed food items loaded with
refined flours and sugars. Why blame animal protein--a perfectly natural food
for the human species, one that we have been eating with great benefit for our
entire 2.4 million year history--yet ignore the role of the nutrient-depleted
garbage that we only began consuming during the last 150 years? It is the
proliferation of the latter--not animal protein--that corresponds with the
rise of degenerative diseases in the Western world.
According to Campbell, his protein suspicions were confirmed when Indian
researchers found that feeding casein (a type of milk protein) to rats increased
their susceptibility to aflatoxin-induced liver cancer. Campbell and his
colleagues began replicating these experiments and repeatedly found that
casein did indeed trigger cancer in susceptible rodents. According to
Campbell, "The safe proteins were from plants, including wheat and soy."
Extrapolating from the deleterious effects demonstrated by casein in rodents,
Campbell goes on to warn that all animal proteins are a deadly threat to
humans.
Campbell's position constitutes little more than a totally unscientific leap of
faith. Casein is one of the major protein-containing fractions of milk; the other
is whey. Campbell does not mention that while casein is often observed to
promote cancer in rats, whey protein does the exact opposite. Numerous
experiments have shown that rats lucky enough to be fed whey experience
greatly reduced tumor incidence when compared to rats fed casein, beef, soy
or standard rat chow[Badger TM][Hakkak R][Hakkak R][McIntosh
GH][Papenburg R][Bounous G].
Preliminary research suggests a similar effect may even occur in humans. A
pilot study by researchers at Dalhousie University, Nova Scotia, Canada
followed 7 cancer patients who were fed 30 grams of whey protein
concentrate daily for six months. Five patients had metastatic carcinoma of
the breast, one of the pancreas and one of the liver. Two patients exhibited
signs of tumour regression, 2 showed stabilisation of the tumour, while the
disease progressed in the remainder but with a trend toward higher
lymphocyte glutathione levels. Glutathione is a potent antioxidant and whey
consumption has been shown to raise glutathione levels in the body. The
researchers concluded that "These results indicate that whey protein
concentrate might deplete tumour cells of GSH and render them more
vulnerable to chemotherapy."[Kennedy RS]
Whey protein concentrates and isolates are now widely available in health
food stores and supermarkets. But nowhere in The China Study does
Campbell discuss the potent anti-cancer effects of whey in rats, and nowhere
does he call for further research into the promising cancer-fighting benefits of
whey in humans. I guess that would conflict with his rabid venting against
animal protein…
Changing the facts
The whey-cancer issue is not the only one in which Campbell deletes
inconvenient facts that would dramatically weaken his anti-animal protein
hypothesis. After turning the discussion to heart disease, Campbell cites the
work of Dr. Lester Morrison, the Los Angeles physician who conducted the
earliest clinical trials into the effect of diet on heart disease recurrence.
Morrison took 100 heart attack patients and placed half of on what he himself
described as a "high-protein, low-fat" diet and a regimen of nutritional
supplements that included calcium, phosphorous, wheat germ, and brewer's
yeast. After eight years, thirty-eight of the fifty control patients had died,
compared to only twenty-two of the treatment patients[Morrison LM].
To listen to Campbell though, you would think that Morrison's dietary
intervention group subsisted on anemic protein intakes. Campbell is quick to
point out that Morrison allowed only two ounces of meat for lunch and two
ounces at dinner. He further points out that whole eggs and whole dairy were
prohibited on the diet. What he doesn't mention--but would full well know
seeing that he has obviously read Morrison's papers--is that Morrison also
prescribed the consumption of 13 ounces of skim milk daily. Morrison's
published "Foods Permitted" list also allowed for "egg whites as
desired"[Morrison LM]. Clearly, Morrison's diet was not the very low-protein
diet regimen that Campbell would have us believe; in fact, the patients
consumed protein levels in excess of the RDA and far greater than the
miniscule amounts recommended by Campbell. So why doesn't he just level
with us? Is it because he has already spent a good portion of his book
dumping on protein and dairy products, and can't bring himself to
acknowledge that a diet that prescribed daily milk consumption and relatively
high protein levels was successful in reducing heart disease?
Campbell also neglects to mention Morrison's intervention was multi-faceted;
it also incorporated overall calorie restriction that resulted in weight loss and
the use of nutritional supplements. Excess weight has long been linked to
higher rates of CHD, while weight loss has been clinically demonstrated to
improve various measures of cardiovascular health. Along with a number of
vitamins and minerals, Morrison prescribed supplemental wheat germ and
brewer's yeast because of their high B-vitamin content, the latter also
containing the important antioxidant mineral selenium. It is now wellrecognized
that certain B-vitamins lower blood levels of a potentially
atherogenic substance known as homocysteine, while a small pilot trial found
a marked reduction in mortality among CHD patients taking selenium-rich
yeast on a daily basis[Schnyder G][Korpela H].
Maybe Campbell didn't feel the supplements were worthy of mention. After all,
despite their clinically-proven effectiveness, Campbell doesn't like nutritional
supplements
Anti-supplement anti-logic
Campbell repeatedly pooh-poohs nutritional supplements, insisting they are of
little to no value when it comes to improving health and fighting disease. I
agree that healthy eating habits should form the foundation of one's dietary
arsenal against disease, but to denigrate nutritional supplements as largely
useless is downright wrong.
Nowhere does Campbell mention the numerous large placebo-controlled
clinical trials--involving real live humans, not lab rats--that showed substantial
reductions in cancer incidence and mortality in the subjects randomized to
take selenium supplements (ironically, two of these trials were conducted in
China…)[Clark LC][Yu SY][Blot WJ].
Nowhere does Campbell mention SUVIMAX, the large randomized, doubleblind,
placebo-controlled trial involving over 13,000 healthy French adults
aged 35-60. The participants took a single daily capsule containing 120
milligrams of ascorbic acid, 30 milligrams of vitamin E, 6 milligrams of beta
carotene, 100 μg of selenium, and 20 milligrams of zinc, or a placebo. After
7.5 years of supplementation, cancer and overall mortality rates in men were
significantly reduced, by thirty-one and thirty-seven percent,
respectively![Hercberg S]
Of course, denigrating nutritional supplements and recommending a vegan
diet, as Campbell does, presents a huge problem--namely, how to get enough
B12? After all, animal foods are the only meaningful source of vitamin B12.
Campbell infers that only plants grown on "lifeless" soil lack B12 (actually
plants grown in any soil will lack B12, unless they are grown in manure and
eaten without washing prior to consumption). Campbell also laments that
modern-day vegetables are scoured of all soil before consumption, and thus
grudgingly acknowledges that B12 supplements for vegans are a good idea.
He also suggests that "..if you never get any sunshine exposure, especially
during the winter months, you might want to take a vitamin D supplement".
So this is Campbell's solution to the lack of B12 presented by veganism, a
pattern of eating that humans were never meant to follow on a long-term
basis: Take B12 supplements...or eat dirt!
Thanks, but no thanks! I'll obtain my B12 the way nature intended--from fresh,
nutrient-dense meats.
More anti-animal food fanaticism
On page 230, Campbell states in bold type:
"There are virtually no nutrients in animal-based foods that are not better
provided by plants."
Clearly, Campbell knows little about the nutritional content of animal foods.
Animal flesh contains many nutrients that are either found in scarce amounts
or entirely absent from plant foods. Here are some examples:
Creatine is used to form adenosine tri-phosphate (ATP), our ultimate source
of cellular energy. Creatine availability is critical during situations when neither
fat nor glucose can be processed quickly enough to form ATP, such as during
the first few seconds of high-intensity physical activities like sprinting and
picking up heavy objects. Creatine supplements have been shown in
numerous studies to aid performance in power-oriented sports, and to
improve muscular strength in patients with congestive heart failure[Kreider
RB].
Creatine only occurs naturally in animal foods, with meat by far the richest
source. Not surprisingly, habitual vegetarians exhibit poorer creatine status
than omnivores[Maughan RJ].
Meat, along with certain species of fish and seafood, is a rich source of
taurine, an important amino acid whose concentration in eggs, milk, and plant
foods ranges from negligible to none[Laidlow SA][Pasantes-Morales H].
Taurine is found in high concentrations in the heart, brain, and central nervous
system, where it helps stabilize the cellular response to nervous stimulation.
Taurine possesses antioxidant capabilities and has been shown in doubleblind
clinical trials to improve cardiac function in patients with congestive heart
failure[Schaffer SW][Azuma J][Azuma J].
Taurine cannot be found in plant foods. Humans are able to manufacture their
own taurine but with far less efficiency than herbivorous animals, as
evidenced by significantly lower blood taurine levels in vegans and rural
Mexican women reporting low meat intakes[Laidlaw][Pasantes-Morales H].
Carnitine is a remarkable amino acid that plays a pivotal role in energy
production, and is absolutely essential for the fat-burning process to proceed.
Because of its pivotal role in energy production, high levels of carnitine are
found in the heart and skeletal muscle. Clinical trials have observed markedly
improved survival outcomes resulting from carnitine supplementation in
patients with heart failure and coronary heart disease[Davini P][Rizos I][Singh
RB][Iliceto S]. A review of the scientific literature shows that this versatile
amino acid has been shown to benefit anorexia, chronic fatigue syndrome,
heart disease, male infertility, sexual dysfunction and depression in aging
men, and pregnancy outcomes. Exercise, even at moderate levels, can cause
a significant drop in muscle carnitine levels; in patients with angina and
respiratory disorders, carnitine enhances exercise tolerance[Kelly
GS][Cavallini G][Gentile V].
The richest food source of carnitine, by far and away, is meat. Compared to
omnivores, vegetarians repeatedly exhibit lower blood levels of
carnitine[Krajcovicova-Kudlackova M][Lombard KA]. Carnitine status appears
to also be worsened by the high-carbohydrate diets recommended by folks
like Campbell. In healthy men receiving the same amount of dietary carnitine,
blood levels of this all-important amino acid rose significantly in individuals
following a high-fat, low-carbohydrate diet, while no change in carnitine levels
were observed in individuals on a high-carbohydrate, low-fat diet[Cederblad
G].
Meat is the only food containing significant amounts of carnosine, an amino
acid with some rather interesting and highly beneficial properties[Chan KM].
Carnosine is a potent antioxidant, being particularly effective in protecting
cellular fats against free radical damage. Research shows carnosine may
accelerate wound healing, boost the immune system, protect against
cataracts, reduce gastric ulcer formation, rid the body of toxic metals, and
even help fight against cancer[Hipkiss AR]. The most potent effect of
carnosine however, appears to be its ability to prevent glycation, which, along
with free-radical production, is a major contributor to degenerative illness and
the aging process[Price DL, et al].
The potent anti-glycation effects of carnosine may explain why a comparison
of vegetarians, vegans and meat-eating omnivores revealed the latter to have
significantly lower levels of nasty glycation end-products known as advanced
glycosylation end-products (AGEs) circulating in their bloodstreams. The
difference could not be explained by total carbohydrate intake, blood sugar,
age or kidney function, as all these variables were similar between the
vegetarian and omnivorous groups[Sebekova K].
Meat, especially red meat, is the richest source of B-complex vitamins. The
B vitamins perform a myriad of crucial functions in the body and requirements
for these vital nutrients are dramatically increased during periods of stress,
illness and physical activity. Unfortunately, the body cannot store a surplus of
B-vitamins for times of increased need, so optimal amounts must be
consumed on a daily basis.
Meat, especially red meat, is also a rich source of iron. Iron forms an
essential component of hemoglobin, the red pigment in blood that transports
oxygen from the lungs to the various body tissues. Insufficient iron intake can
result in impaired immune function, decreased athletic performance and lack
of energy. A double-blind Swiss study of women aged between 18-55 who
had sought medical advice for fatigue, found that most of the women had low
blood concentrations of iron. After four weeks, a significantly greater number
of women receiving iron supplements reported a decrease in fatigue
symptoms than those receiving placebo[Verdon F]. Australian women
complaining of fatigue showed similar improvements when treated with either
iron supplements or a high-iron diet[Patterson AJ].
Those who need to boost their iron stores should look to read meat rather
than supplements or plant foods. When previously sedentary women were
challenged with 12 weeks of aerobic exercise, a high meat diet protected iron
stores more effectively than iron supplements[RM Lyle]. Heme iron (the form
of iron found in meat) is far more easily absorbed by the body than non-heme
iron from plant sources. Men and women on lacto-ovo vegetarian diets
consistently exhibit lower blood levels of iron, even when consuming similar
total amounts of dietary iron as omnivores[Alexander D][Hunt JR].
Animal foods are also by far and away the richest source of zinc. Apart from
oysters, meat is the richest source of this mineral, with red meats again
containing greater amounts of this mineral than white meats. Zinc is essential
for optimal growth and repair, being involved in the actions of several vital
hormones and hundreds of enzymatic reactions in the body. Zinc is essential
for the formation of superoxide dismutase, one of the body's most potent
antioxidants. Zinc deficiencies can result in growth retardation in children,
significantly weakened immune function, poor wound healing and muscle loss,
lowered testosterone levels and sperm counts, and have also been linked to
depression and gastric cancer[Prasad AS][Brown KH][Siklar Z][Dardenne
M][Ibs KH][Maes M][Nakaji S][Prasad AS][Hunt CD].
Overt zinc deficiencies are common to Third World countries where animal
protein consumption is low. Milder, 'sub-clinical' zinc deficiencies also appear
to be a common phenomenon in modernized nations. Those who follow low
fat diets are at even greater risk of zinc deficiency[Retzlaff BM][Baghurst KI, et
al].
Animal foods, most notably brains and fatty fish, are the only dietary source of
long chain omega-3 fats such as DHA and EPA (special algae
supplements containing LCPUFA have only recently become available). Some
plant foods do contain omega-3 fatty acids, but in a form known as alphalinolenic
acid (ALA). To obtain the LCPUFA the body needs, ALA must be
converted endogenously to longer-chain omega-3s such as DHA and EPA.
The conversion rate, however, is very low, with clinical studies repeatedly
showing that omega-3 fats from plant sources to be vastly inferior to those
from animal foods when it comes to boosting long-chain omega-3
status[Fokkema MR][Francois CA][Tang AB, et al].
Numerous studies have shown that vegetarians consume far lower levels of
long-chain omega-3 fats--not surprising considering their avoidance of meat
and fish[Rosell MR, et al]. Studies of pregnant women show that, compared to
omnivores, vegetarians have significantly lower levels of DHA in their breast
milk, with vegans displaying the lowest levels of all. These negative fatty acid
profiles are reflected in infants, with vegan newborns displaying significantly
lower red blood cell levels of DHA. This is an ominous finding, given the
critical role that omega-3 fats play in healthy immune function and cognitive
development[Williams C][O'Connor DL][Helland IB][Moriguchi T][Dunstan JA].
Along with lowering one's omega-3 levels, low meat intakes also increase the
concentration of omega-6 fats inside the body. A high dietary and bodily ratio
of omega-6:omega-3 fats increases the risk of numerous diseases, including
cardiovascular disease. A sizable portion of heart attacks are triggered when
blood clots lodge themselves in narrowed coronary arteries and prevent the
flow of blood to the heart, a process also known as arterial thrombosis. One of
the early and key events in the development of thrombosis is platelet
aggregation, the 'clumping together' of blood platelets. Researchers from
Melbourne, Australia, compared heavy-meat-eaters, moderate-meat-eaters,
lactoovegetarians and vegans and found that as meat consumption increased,
platelet aggregation decreased. Heavy-meat-eaters displayed the lowest
levels of platelet aggregation, while vegans displayed the highest levels.
While meat eaters ate more of the omega-6 fat arachidonic acid, vegetarians
consumed significantly higher concentrations of the omega-6 fat linoleic acid
and significantly lower amounts of long chain omega-3's. The resultant
unfavorable omega-6:omega-3 is believed to be responsible for the higher
levels of thromboxane A2 (TXA2) seen in the vegetarian group[Li D]. TXA2 is
an eicosanoid that stimulates platelet aggregation. Chilean researchers have
similarly observed significantly lower blood levels of EPA and DHA, and
concomitant increases in blood platelet aggregation, among
vegetarians[Mezzano D]
Plant foods contain all the nutrition that animal foods do? You've got to be
joking!
So what about the China Study itself?
Despite it's title, only a small portion of The China Study is actually devoted to
discussing the giant epidemiological study of the same name; the rest of the
book simply reads like an extended sales brochure for veganism.
Beginning in the early eighties, Campbell was part of a group of Chinese,
British and US researchers that presided over the massive epidemiological
study known as the China Project, or China Study. The New York Times
dubbed it "the Grand Prix of epidemiology", and it gathered data on 367
variables across sixty-five counties and 6,500 adults. After the study data was
compiled, the researchers had calculated "more than 8,000 statistically
significant associations between lifestyle, diet and disease variables."
According to Campbell, the China Study data showed that: "People who ate
the most animal-based foods got the most chronic disease. . . . People who
ate the most plant-based foods were the healthiest and tended to avoid
chronic disease."[p. 7]
In reality, the China Study showed nothing of the sort.
What Campbell won't tell you about the China Study
The China Study does not contain the actual data gathered from its namesake
study. So when Campbell claims that the China Study found a consistent
relationship between animal foods and various diseases, readers have no way
of verifying this information for themselves.
Unless of course, they get up off their butts and go retrieve the actual China
Study data for themselves. To do this, they will need to check their local
libraries (university libraries are the best bet) for a book titled Diet, life-style,
and mortality in China: A study of the characteristics of 65 Chinese
counties[Chen J]. Once readers have this book in their possession, they will
quickly discover that there is a galaxy-sized gap between the actual findings
of the China Study and the claims made by Campbell in his popular book
version.
Overall mortality
Let's start with overall mortality, unarguably the most important mortality
statistic of all. Animal protein, fish protein, meat intake, saturated fat, and fat
calories were all negatively associated with all-cause mortality in infants,
children, teenagers and adults, although none of the associations reached
statistical significance (for those unfamiliar with research-speak, a negative
correlation means that as intake of these foods increased, mortality risk
decreased; failure to reach statistical significance means that researchers
can't be sure these findings were not due to chance).
Among those aged 0-64, total protein returned a 29% negative association
with overall mortality. This finding was statistically significant (p=0.05).
In all age groups, egg consumption was negatively associated with all-cause
mortality, with a statistically significant 43% decrease (p=0.01) in overall
mortality among those aged 0-64.
No statistically significant relationships, protective or otherwise, were found for
milk intake, fiber, cereal grains, legumes, and vegetables among those aged
0-64.
The only other dietary factor that was significantly associated with overall
mortality among those aged 0-64 was soy sauce (not soy products), which
showed a 43% decrease in mortality risk (p=0.001)
Cancer
Neither total protein (+12%), animal protein (+3%), fish protein (+7%), plant
protein (+12%), meat intake (-20%), saturated fat (+2%), fat calories (-17%),
eggs (+19%), nor milk (+6%) demonstrated any statistically significant
association with mortality from all cancers. Rice (-26%, p=0.05) and green
vegetables (-28%, p=0.05) were statistically associated with reduced cancer
mortality, as were the use of alcohol (-27%, p=0.05), home-made cigarettes (-
32%, p=0.01), and total tobacco use (-25%, p=0.05).
(Readers can now see why I have such a generally low opinion of
epidemiological research--if we were to treat the findings of the China Study
seriously, then we would all go out and start drinking and smoking cigarettes
in order to improve our odds against cancer! Despite his obvious enthrallment
with the results of the China Study, Campbell for some reason doesn't
recommend this…)
With regards to specific types of cancer, no statistically significant
associations were observed for total protein, animal protein, fish protein, meat
intake, milk intake, saturated fat, total fat, fiber, cereal grains, legumes,
vegetables and mortality from colorectal or breast cancers.
Heart Disease
No statistically significant associations were observed for total protein, animal
protein, fish protein, meat intake, milk intake, saturated fat, total fat, fiber,
legumes, and mortality from coronary heart disease.
Rice was associated with a statistically significant decrease (-58%, p=0.001)
in CHD risk, while wheat flour was associated with a statistically significant
increase in CHD risk (+67%, p=0.001). A similar phenomenon was noted for
stroke mortality, with a statistically significant risk decrease noted for rice (-
44%, p=0.01), and a statistically significant increase in risk observed for wheat
flour (+55%, p=0.001) (again, despite his apparent rapture with the China
Study results, nowhere does Campbell recommend the avoidance of wheat or
wheat flour; in fact, he encourages the consumption of whole grain cereals).
So there you have it…the "Grand Prix" study that supposedly showed "People
who ate the most animal-based foods got the most chronic disease. . . .
People who ate the most plant-based foods were the healthiest and tended to
avoid chronic disease" actually showed that animal-based foods imparted no
increased risk of all-cause mortality, cancer deaths, or cardiovascular
mortality.
Conclusion
Is Campbell deliberately lying to us? Or is he merely suffering from an inability
to cast aside his own personal prejudices and present a full and objective
presentation of the facts, because the facts conflict with what he wants to
believe? I can't get inside Campbell's head to give you the answer, but it is not
at all uncommon for even highly decorated researchers to "ignore" or
flippantly dismiss evidence that fails to support their deeply-held beliefs, and
instead focus intently on that which does. The China Study is a classic
example of this phenomenon in action.
Campbell's lopsided presentation of the facts is most regrettable. If you visit
the The China Study page at Amazon.com you will see that the book is selling
well and has received glowing reviews from unwitting readers who clearly
have not taken the time to validate Campbell's claims for themselves. Like so
many people in today's society, these folks are too lazy to think and research
for themselves, and are therefore ready prey for misguided "gurus" peddling
scientifically unsound nonsense.
References
Badger TM, et al. Developmental effects and health aspects of soy protein
isolate, casein, and whey in male and female rats. Int J Toxicol. 2001 May-
Jun;20(3):165-74.
PLEASE ENSURE that you give full credit to the author, whether you reproduce the article in whole or part. A hyperlink to http://www.theomnivore.com/ would also be greatly appreciated! Those wishing to reprint this or any other article on TheOmnivore.com for commercial purposes should email: ac.theomnivore@gmail.com
See the following sites for more critiques of The China Study:
The Blog of Brad
The Truth About The China Study